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a b s t r a c t

The A/H1N1 influenza pandemic has been in the spotlight since the virus was first detected
in Mexico in early 2009. To prevent the repetition of the 1918 influenza pandemic,
the global response to this pandemic has been strong. In Thailand and in many other
countries, schools have been a major source of outbreaks, which then spreads to the
general population. Understanding the dynamics of school outbreaks and the impact
of disease intervention in school settings is crucial for the effective mitigation of a
pandemic. Using data from outbreaks in School G, a private school in Bangkok where
detailed epidemiological datawere collected, we estimated the basic reproduction number
(R0) to be 3.58 [95% confidence interval: 2.88 to 4.28]. We then modeled outbreaks
in school settings with Susceptible-Exposed-Infectious-Recovered (SEIR) equations and
tested various interventions such as school closure and student screenings. We found that
closing the school on the date with the peak number of daily incidences usually appeared
to be effective in preventing further outbreaks. However, if the school was closed too early,
subsequent cases would appear after reopening. With no intervention, the number of total
cases reaches 83%. Individual student screenings appeared to reduce the number of total
cases by up to 40%. In a situation in which the widespread outbreak of a mild disease
is unavoidable and in which the goal is to slowly reach sufficient herd immunity while
minimizing the number of cases, closing the school at the predicted date with the peak
number of daily incidences and screening for respiratory symptoms appear to be the most
appropriate intervention methods.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

A number of intervention strategies can reduce the impact of influenza pandemics like the 2009 A/H1N1 influenza
pandemic [1–5]. Pharmaceutically, influenza vaccination can be used to reduce death and disease. However, such vaccines
are unlikely to be available in a timely manner or in sufficient quantities to eradicate a pandemic [6–9]. Other non-
pharmaceutical disease control options also need to be considered, such as social distancing, avoiding the use of public
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transportation, wearing face masks, and closing schools to protect people from illness and to maintain critical societal
functions [10–12].

Because non-pharmaceutical-based strategies have not been as extensively studied or followed up, we were motivated
to research a school closure strategy that could alleviate most influenza epidemics. It has been shown that nonmedical
interventions such as school closure and social isolation was beneficial in reducing the transmission of the 2009 A/H1N1
influenza, even though quantifying this benefit is not possible, and school closures are not always recommended by the
World Health Organization (WHO) [2,3].

What is the effectiveness of school closure interventions against pandemic influenza? When should schools be closed?
For how long should schools be closed? These are crucial questions that need to be answered. However, arriving at
an optimal scheme for answering these questions is not an easy task during an actual epidemic. During the epidemic
period, the epidemic curve is usually unknown, and unexpected outbreaks can occur, especially in situations involving an
emerging disease. For example, one could suggest that a school should close when the absentee rate is around 15%. But an
underestimation of cases could occur due to the omission of asymptomatic infected individuals. Another potential concern
involves the lack of real-time or up-to-date data reports from schools, which could occur if schools lack reliable staff or are
worried about how closures could impact their reputation and budgets.

As the number of confirmed cases of the A/H1N1 influenza pandemic increased globally in 2009, the United Statesmainly
targeted students in elementary and high schools for prevention. New York’s St. Francis Preparatory School closed when
28 cases of the 2009 A/H1N1 influenza pandemic were confirmed. Meanwhile, Japan swiftly acted to contain the disease
through school closures and other social distancing measures [13]. Australia also responded aggressively, closing schools in
Victoria and Queensland for varying periods of time. In Thailand, the Department of Disease Control confirmed numerous
cases of the 2009 A/H1N1 influenza amongmiddle school students during the early pandemic [14,15] and recommended the
routine screening and isolation of cases. The schools could temporarily close if there were significant numbers of confirmed
cases of the 2009 A/H1N1 influenza and if it rapidly spread through the school. The duration of a particular closing was
dependent on ongoing epidemiological incidents in the affected school and on consultations with local and state health
departments. Normally, a period of 5–14 days passed before the schools considered reopening.

Improving the efficacy of predictions has been the main focus in developing a mathematical model. However, our
knowledge related to school closure via mathematical models has been quite limited mainly because empirical data are
still relatively rare and because previous models cannot investigate how and when to close schools (for example, is closing
only the infected room or floor better than closing the entire school? What is the optimum time to implement strategies?)
[1,10–12]. There are many epidemic-related software packages that use school closure as one of their non-pharmaceutical
interventions; e.g., InfluSim [16,17] and EpiSimS [18]. However, none of these software packages tells us how or when we
should close a school to make the school closure intervention most effective. Recently, Lee et al. [19] employed an agent-
based computer simulation model (ABM) to explore the effects of various school closure strategies on mitigating influenza
epidemics. They found that for school closure strategies, closing schools for 8 weeks could reduce the attack rate (AR) from
35% to 25% for R0 = 1.4, and durations of less than 8 weeks had little impact on the overall AR, while durations of 2
weeks or less actually slightly increased the overall AR. In their study, students that were isolated from their schools could
still make contact with and spread the disease to other individuals in their communities, and this might be the reason
why closing schools for 2 weeks or less slightly increased the overall AR. House et al. [20] also investigated the impact of
localized short-duration school closures in England. By using a standard age-structured epidemic model, they found that
relatively short duration school closures (less than or equal to 4 weeks) reduce the peak incidence by between 30% and 70%
and that the closures should be carefully timed to start just before the expected epidemic peak. However, House et al. [20]
did not investigate the effects of isolating sick students. Lee et al. [19] also did not study the effect of combining strategies
(e.g., isolation + school closure) or partial school closures in which only some rooms or classes are closed. If we could
isolate schools and students from their communities and quarantine infected students to their homes until they recover,
how much more effective would the school closure and student isolation strategies be? It is interesting to address these
questions. In our current study, to keep our model as simple as possible and able to run on a modern PC without the need
for a supercomputer or computer cluster, we employed the SEAIRmodel as an efficient numerical tool for simulating school
closures to investigate what is the most effective criterion for taking such a measure. It should be mentioned once again
that for the model to provide precise predictions, data validation and more accurate ways of measuring data from the 2009
A/H1N1 influenza pandemic cases are needed. However, this studywill certainly help scientists andmathematical modelers
give better information to health officials so that they can make the right decisions when managing a pandemic.

In our work, we built a detailed school model that particularizes to the schoolroom level. This model allows us to study
several intervention strategies related to an epidemic at a school, including individual room closure, individual floor closure,
full school closure, and the individual screening of infectious students. Our main objective was to establish criteria for
performing intervention strategies that could mitigate the 2009 A/H1N1 influenza transmission in a school and could be
applied to another epidemic wave or other epidemics. We investigated the effects of starting conditions, the effectiveness
of individual screenings, and the duration of closure periods on mitigating the impact of the influenza. In addition, some
parameters (such as reproduction number, contact matrix, and asymptomatic ratios) that normally play significant roles in
the spreading of the disease were either obtained from the empirical data or from a numerical estimation. A good estimate
of the epidemic rate or parameters is needed to make the model more realistic and to provide predictions that can help
healthcare planners decide the appropriate measures to take to contain infections.
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Fig. 1. (a) Model structure. Si, Ei, Ii, Ai , and Ri represent the number of susceptible, exposed, symptomatic infectious, asymptomatic infectious, and
recovered individuals in the ith compartment, respectively. Transition rate for each state is shown near the transition arrow. (b) School structure. The
typical school size in Thailand is 5 floors with 5 rooms each. Each room holds approximately 50 students. The index-case room is labeled in red. The
index-case floor is modeled by using a finer scale and a coarser scale on other floors.

2. Methods

2.1. The model

We developed a spatial compartment model based on traditional Susceptible-Exposed-Infectious-Recovered (SEIR)
equations, where each room or floor is represented by a spatial compartment. Si, Ei, Ii, and Ri represent the number of
susceptible, exposed, symptomatic infectious, and recovered individuals in the ith compartment, respectively. Because the
number of asymptomatic infectious individuals is crucial in determining the intervention strategies needed for epidemic
control (see below), we separated out a number of asymptomatic individuals and represented them by the variable Ai.

We shall refer to the model as a SEAIR model. Each spatial compartment is thus governed by the same SEAIR dynamics
as shown in Fig. 1(a). Susceptible individuals Si are infected at a rate of

∑n
j=1 βij(Ij + qAj), where βij is the transmission

rate from the jth compartment to the ith compartment, which incorporates the encounter rate between susceptible and
infectious individuals together with the probability of transmission. q is the asymptomatic infectiousness, which accounts
for the ‘‘average’’ reduction in transmissibility among individuals in the asymptomatic class (A) [21,22]. The transmission
rates between these compartments are proportional to the contact rates and are scaled such that the model yields a given
basic reproduction number R0 [23]. The summation is taken over all of the compartments that can spread the infection to
the ith compartment. The infected individuals (Ei) incubate the infection for a mean duration of 1/σ . After passing through
the exposed state, infected individuals become fully contagious, and a fraction (CI ) of them develops clinical symptoms
(Ii), while the remainder (CA) becomes asymptomatic (Ai) (CA + CI = 1). The mean duration of the contagious stage for
both symptomatic and asymptomatic groups is assumed to be 1/γ . Finally, the infectious individuals develop protective
immunity and are added to the recovered group (Ri).

Based on the described model and the structure seen in Fig. 1, the law of mass action leads to the following set of
deterministic coupled ordinary differential equations:

dSi
dt

= −Si
n−

j=1

βij(Ij + qAj) (2.1)

dEi
dt

= Si
n−

j=1

βij(Ij + qAj) − σEi (2.2)

dAi

dt
= CAσEi − γ Ai (2.3)

dIi
dt

= CIσEi − γ Ii (2.4)

dRi

dt
= γ Ai + γ Ii (2.5)

where i = 1, 2, . . . , n, and n is the number of spatial compartments. These equations describe the rate of change of
susceptible, exposed, asymptomatic infectious, symptomatic infectious, and recovered individuals, respectively, in the ith
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Fig. 2. Number of daily laboratory-confirmed cases of the novel H1N1 in school G. Note that in this figure only the early exponential growth phase is
shown.

spatial compartment, with the conservation constraint Si + Ei + Ai + Ii + Ri = Ni, where Ni is the total number of students
in the ith compartment. Here, the assumption of a homogeneous well-mixed population has been made.

For the sake of simplicity, we used the school structure shown in Fig. 1(b) as the study example. A typical medium-
sized school in Thailand has 5 floors with 5 rooms each and about 50 students in each room. For illustrative purposes, we
assumed that the index-case room (i.e., the room that we found the first symptomatic infectious student) was the room
located at the center of the school (labeled in red). In the index-case floor, we used a finer scale by modeling each room
as a compartment. However, for quick calculations, we modeled the other floors by using a coarser scale by grouping 5
rooms into a compartment. In total, we had 9 spatial compartments that could interact with each other via a contact matrix
M = [mij]. The elements of the transmission matrix β = [βij] were proportional to the elements in this contact matrix [23].

We based our parameter values on epidemiological data and the seasonal influenza and 2009 influenza A (H1N1)
estimates that were commonly reported in the literature. These parameter values were a mean incubation period (1/σ )
of 2 days, and a mean infectious period (1/γ ) of 5 days. However, uncertainty remains concerning the key epidemiological
parameters of influenza A (H1N1), namely, the basic reproduction number R0. The first report of R0 wasmade by Fraser et al.,
who estimated the basic reproduction number R0 of theMexican outbreak ofH1N1 to be in the range of 1.2–1.6 [24],whereas
others reported R0 to be in the range of 2.2–3.1 [25] and, in Japan, 2.3 [13]. These estimated values of R0 are reasonable for a
community-wide setting and vary according to region.However, a school setting is different froma community-wide setting.
It is a dense and close-contact setting. Hence, the virus transmission rate should be higher in a school setting. Paterson et al.
used survey data from the students of the St. Francis Preparatory School outbreak to calculate the effective reproduction
number R from the early growth rate of the epidemic in a school-based setting. This effective reproduction number R is
usually comparable R0 to in the early epidemic phase when all individuals can be considered susceptible. They reported that
the basic reproduction number for this school-based setting is approximately 3.45 for an infectious period of 5 days [26].

We also calculated R0 from epidemiological data obtained from the first school outbreak in Bangkok, Thailand. School
G is the first school in Thailand in which the influenza A (H1N1) outbreak was detected. The number of daily laboratory-
confirmed cases in the early epidemic phase is shown in Fig. 2. The basic reproduction number was estimated from the
early epidemic phase in the absence of interventions, during which the effects of susceptible depletion are small [27]. After
estimating the initial exponential growth rate (r) for the cumulative number of cases, the basic reproduction number was
then computed by substituting r into the following expression [28,29]:

R0 =
R(t)
S(t)

,

where R(t) is the effective reproduction number at time t , and S(t) is the fraction of susceptible individuals at time t . If we
consider only the early epidemic growth phase, the above equation can be simplified to [28]

R0 =
R(t ≈ 0)
S(t ≈ 0)

=
1 + Vr + f (1 − f )(Vr)2

S(t ≈ 0)
≈ 1 + Vr + f (1 − f )(Vr)2,

where V is themean serial interval (the time between the onset of symptoms for the first generation and that for the second
generation), and f is the ratio of the mean infectious period to the mean serial interval. The exponential growth rate, r ,
was found to be 0.2668 per day and the calculated R0 was 3.58 (95% confidence interval: 2.88–4.28), which is close to the
value found by [26] for a mean infectious period of 5 days and a mean incubation period of 2 days. We also calculated R0
from data collected from jailed prisoners. A jail-based setting, like a school-based setting, is a close-contact setting. What
we found was that in the jail-based setting, the R0 was also greater than 3 (unpublished data), which confirms that in a
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Table 1
Contact matrix. The contact numbers in the index-case floor are fitted with y = 20 exp(−0.749x); the contact numbers between floors are fitted with
y = 36 exp(−0.723x) and are rounded to the nearest integer. Students in each room in the index-case floor are assumed tomake the same contact number
to other students in other floors. The label in Fig. 1(b) goes from left to right and top to bottom.

Room1 Room2 Room3 Room4 Room5 Floor1 Floor2 Floor4 Floor5

Room1 20 9 4 2 1 8 17 17 8
Room2 9 20 9 4 2 8 17 17 8
Room3 4 9 20 9 4 8 17 17 8
Room4 2 4 9 20 9 8 17 17 8
Room5 1 2 4 9 20 8 17 17 8
Floor1 8 8 8 8 8 36 17 4 2
Floor2 17 17 17 17 17 17 36 8 4
Floor4 17 17 17 17 17 4 8 36 17
Floor5 8 8 8 8 8 2 4 17 36

close-contact setting the R0 is usually high. We started this research work in June 2009, which was when the epidemic in
Thailand just started, to give suggestions to the Royal Thai Government and policy makers how and when to close schools
in Thailand; however, at that time, data concerning the number of infected students (and consequently R0) in school Gwere
not yet available. Therefore, in this study, unless stated otherwise, we use the value of R0 from the literature: R0 = 3.45 [26].
However, to investigate the (possible) uncertainty in R0, we also performed a sensitivity analysis and ran simulations with
various values of R0. The results are shown in Section 3.5.

Eqs. (2.1)–(2.5) were numerically solved by using the explicit Euler method. We used a time step of dt = 10−3 days;
testing using a smaller time step did not change the result, and the integral was well converged. As expected from the
simulations, there was only one infectious student in the index-case room, and the other students in the school were in the
susceptible group. Afterward, the outbreak propagated in a wave-like manner.

2.2. Contact matrix, next generation matrix, and basic reproduction number

Weemployed awho-acquires-infection-from-whommatrixM = [Mij], which gives the number of contacts of individuals
from the ith compartment to the students in the jth compartment. A bi-directional contact pattern is assumed in this model,
meaning that if the students in the ith compartment make n contacts with the students in the jth compartment, then the
students in the jth compartment also make n contacts with the students in the ith compartment in a symmetrical manner.
The transmission matrix β = [βij] is obtained by multiplying the contact matrixMwith an appropriate scaling factor κ:

β = κM. (2.6)

The basic reproduction number R0 is defined as the expected number of secondary infections produced by an index case
in a completely susceptible population [23,27]. The next generation matrix in our model is the following:

N = β/γ = κM/γ . (2.7)

The dominant eigenvalue of this matrix is defined as the basic reproduction number R0 [23]. So our task is to find the scaling
factor κ such that

R0 = max(Eigenvalue(κM/γ )). (2.8)

Transmission between these spatial compartments is based on the contact matrix given in Table 1. We estimated the
contact matrix by making the following assumptions: (1) In the index-case floor, a student can make 20 contacts with
other students in the same room and 1 contact with other students in the room furthest away, while the contact pattern
decreases exponentially across the room in the same floor (private communication). (2) Among floors, the contact pattern
also decreases exponentially.

2.3. Non-pharmaceutical intervention strategies by school closure

We employed three non-pharmaceutical intervention strategies: (1) individual screening; (2) closure strategies: room,
floor, or entire school closure; and (3) strategy (1) combined with strategy (2). With the individual screening strategy,
symptomatic infectious students are allowed to stay at the school for a mean duration of Ta days after having developed
into the infectious class (I); after this mean period of time, they are forced to stay at home and are moved to the recovered
class (R), so they cannot infect other students anymore. Wewould like to emphasize that the school systemwas assumed to
be a closed system. The closure strategy of rooms or floors was implemented by setting the transmission rate βij associated
with rooms or floors to zero in the mean time interval of closure. This is because students in the closed rooms and floors
cannot make any contact with other students in the school because they are forced to stay at home, so the contact rates
must be zero. Similarly, the entire school closure strategy was implemented by setting all elements of the transmission rate
matrix β to zero in the mean time interval of school closure.
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3. Results and discussion

3.1. No intervention

We initially calculated the time course for the number of individuals in the S, E, A, I and R groups for the baseline scenario
with no intervention strategy (Fig. 3). Because the proportion of the number of asymptomatic individuals to the number of
total infectious individuals (CA) remains uncertain for the H1N1 influenza, we used Thailand survey data, which found that
CA is about 0.3 (unpublished data). So, unless stated otherwise, we used CA = 0.3. As shown in Fig. 3(a), the equilibrium
value of recovered students was about 83%. This uncontrolled school epidemic ‘‘overshoots’’; that is, more students are
infected than the minimum percentage of immune individuals, 1 − 1/R0 = 71%, needed to stop the epidemic in a perfectly
mixed population. Fig. 3(b) shows the percentage of daily incidence for symptomatic infectious (Inew) and exposed (Enew)
individuals. We can see that the peak value of Inew is 3.04% and occurs on the 24th day, and the peak value of Enew is 4.54%
and occurs on the 22nd day, whereas the number of symptomatic infectious individuals I peaks on the 27th day, which lags
slightly behind that of Inew, with a peak value of 12.85%. The percentage of infectious individuals in each room and floorwere
plotted as a function of time and shown in Fig. 3(c). From this figure, we can clearly see that the peaks of I for each room and
floor occurred at different times. Students in rooms and floors that were close to the index-case room were infected faster
than the ones that are far from the index-case room. The epidemic wave propagated from the index-case room to the room
or floor furthest away, which was mainly driven by the contact matrix.

3.2. School closure strategies

In our work, we examined the effect of school closure on the course of an epidemic by subdividing the school closure
strategy into closing only the index-case room, closing only the index-case floor, or closing the entire school. Fig. 4 shows
the results of implementing the closure strategy in our school model. Note that, in ourmodel, we have also isolated students
from their communities, so when school is closed, all students are assumed to be quarantined to their homes. The graphs
show the percentages of equilibrium-recovered individuals (Req) after implementing the strategy for (A) 5 days and (B)
9 days (other cases are shown in Section 3.5). From graphs (A) and (B), we can clearly see that with the same start date
for implementing the intervention strategy, the entire school closure (SC) strategy was more effective than closing only the
index-case floor (FC) or closing only the index-case room (RC). Moreover, themost effective date to start the closure strategy
(RC, FC or SC) for both the 5-day closure and the 9-day closurewas the 24th day. Interestingly, the 24th daywas also the date
with the peak number of daily incidences of infectious individuals (Inew). The entire school closure (SC) strategy reduced Req
from 83% to 73.59% and 66.47% for the 5-day closure and the 9-day closure, respectively.

Our results are consistent with results from previous studies [19,30] that found that there is an optimal time to start the
school closure strategy; moreover, our results suggest that the optimal time is the peak date of Inew. If we start to implement
the closure strategy too early, there will be enough susceptible individuals left for the epidemic to resumewhen the control
is lifted and when the school session is resumed. This can clearly be seen in Fig. 4(c), where we started to close the entire
school for 9 days on the 18th day, which is before the optimal time (the 24th day). After the control was lifted, the epidemic
resumed (as can be seen from the second peak). Our results, which show that there is an optimal time to start a school
closure intervention, also agree with those reported by Bootsma and Ferguson [31]. They studied the effect of public health
measures enacted in US cities during the 1918 influenza pandemic and reported that an optimal maximum effectiveness
existed. They reported that effective control could reduce Req to 65%, while optimal control could reduce Req to 50% [31].
House et al. [20] also suggested that school closures should be timed to start just before the expected epidemic peak.

It should also be mentioned that deciding how long to close a school depends on many parameters (that are not
considered here), e.g., mortality rate and disease severity. However, long-term school closure has an adverse economic
impact; Sadique et al. [32] estimated a cost in the range of 0.2%–1.0% of GDP in the UK following 12 weeks of school closure.
Lempel et al. [33] also estimated both the direct economic impact and health care impact for school closure durations of 2, 4,
6, and 12 weeks under a range of assumptions. They found that closing all schools in the US for 4 weeks could cost between
$10 and $47 billion dollars (0.1%–0.3% of GDP) and lead to a reduction of 6%–19% in key health care personnel. Currently,
there is no estimate of the economic impact of school closures in Thailand.

3.3. Individual screening strategy (IS)

Next, we examined an individual screening strategy (IS). In implementing this intervention strategy, symptomatic
infectious students were allowed to stay at the school for a mean duration of Ta days after developing into the infectious
class (I). After Ta days, they were forced to stay at home and were moved to the recovered class (R); hence, they could not
further infect other students. Obviously, the efficiency of this intervention strategy depends on the asymptomatic proportion
(AP or CA), i.e., the proportion of asymptomatic infectious individuals to the total number of infectious individuals. If an
epidemic has a higher AP, our ability to identify infectious students will be weakened (because we cannot identify students
as infectious if they do not show any symptoms).

Fig. 5(a) shows the peak daily incidence values of symptomatic infectious individuals at various APs. Although, at the
end, Req will be the same, the number of symptomatic infectious individuals at any time over the course of an epidemic
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Fig. 3. Baseline results for no intervention. (a) Percentage of students in S, E, I, A, and R groups calculated from the entire school as a function of time
(days). The asymptomatic proportion (CA) = 0.3 was used. The steady state value of recovered students is about 83%. The peak of symptomatic infectious
individuals occurs on the 27th day, with a peak value of 12.85%. (b) Percentage of daily incidences for symptomatic infectious (Inew) and exposed (Enew)
individuals averaged over the entire school. The peak value of Inew is 3.04% and occurs on the 24th day, whereas the peak value of Enew is 4.54% and occurs
on the 22nd day. On the 24th day, the cumulative number of symptomatic infectious individuals is 28%. (c) The percentage of infectious individuals in
rooms 1, 2 and 3 (r1, r2 and r3) from left to right on the index-case floor and floors 1 and 2 (f1 and f2). Note that r3 is the index-case room.

is different for different APs. Implementing an IS strategy causes the contact patterns between students in the school to
change. As a result, the peak date of Inew changes accordingly. Our peak dates of Inew as a function of Ta for various values of
AP are shown in Fig. 5(b). We can see from the graph that the peak date of Inew shifted from the 24th day to a later day. The
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Fig. 4. The results of implementing the closure strategy alone. The graphs show the percentages of equilibrium-recovered individuals (Req) after
implementing the strategy: closing only the index-case room (RC), closing only the index-case floor (FC), and closing the entire school (SC). The strategies
were implemented for a time interval of 5 days (a) and 9 days (b). The x-axes show the start date of the closure strategy implementation. From both graphs,
we can see that the entire school closure is the most effective intervention method in the closure category, and the 24th day is the most effective date to
start to close the entire school for both the 5 day and 9 day closures. (c) Percentage of students in the S, E, I, A, and R groups calculated from the entire
school as a function of time (days). The school closure started on the 18th day and lasted 9 days. From this figure, we can see that there are two peaks of I .
The first peak occurs before the close date, while the other one occurs after the school classes have resumed. The steady state value of recovered students
is about 75%.
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Fig. 5. The results of implementing the individual screening strategy (IS) alone. The individual screening strategy is stated at the beginning of the outbreak
(time0). (a) The peak value of the percentage of newdaily symptomatic infectious cases (which is equal to dIcumulative/dt for dt = 1) at various asymptomatic
proportions (APs). (b) The graph shows the date at which the peak value of Inew occurs versus the number of days in which symptomatic infectious students
are allowed to stay at the school after they become infectious (Ta) for different numbers of APs. (c) The figure shows the percentage of the equilibrium-
recovered individuals when the IS strategy is implemented with various Ta .

length of this shift depends on Ta and APs. The faster the Ta or the lower the AP, the longer the shift in peak date. This can be
understood by considering that because the symptomatic infectious students are allowed to stay at the school only for Ta
days, their infectious period is effectively equal to Ta days, which is usually shorter than the ‘‘real’’ infectious period of 1/γ ,
and their reproduction number is thus reduced Ta/(1/γ ) = γ Ta times. The reduction in the reproduction number causes
the epidemic to spread slower than in the uncontrolled case. Moreover, if the disease has a small AP, this will increase our
effectiveness in identifying infectious students to force to stay at home and, therefore, the effectiveness of the IS strategy,
which is consistent with the result from [19]. Lee et al. [19] found that when parents were able to identify and prevent 60%
of symptomatic children from going to schools, the overall AR decreased from 34% to 29% and the peak of the epidemic was
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Fig. 6. The results of combining individual screening (IS) and closure strategies with Ta = 1. The IS was implemented from the start of the epidemic. The
closure strategy started at various times. The close time interval is 5 days (a) and 9 days (b).

delayed by 1 week (R0 = 1.4). However, our results (R0 = 3.45) suggest that if the AP = 30% and if we are able to screen
all infectious student with Ta = 1, the overall AR would decrease from approximately 83% to 40%, and the peak date could
be delayed by approximately 4 weeks. This suggests that if we could isolate schools and students from their surrounding
communities, the AR could be further reduced. The data for Ta = 1 and AP = 10% is absent because, at these parameter
values, the epidemic dies out at the start. The number of equilibrium-recovered individuals (or cumulative patients) Req as
a function of Ta after implementing the IS strategy is shown in Fig. 5(c). Apparently, Req strongly depends on Ta and AP. The
faster the start time Ta and the lower the AP results, the lower the Req.

3.4. Individual screening strategy plus closure strategy

Finally, we combined the IS strategywith the closure strategy. The IS strategy started from time zero andwasmaintained
indefinitely. The closure strategy started at varied times. Fig. 6 and Figure S1 (see Supplementary Information) show the
results of the combined strategies for Ta = 1 and Ta = 2, respectively. The results suggest that the optimal time to start the
closure strategy (either RC, FC, or SC) for Ta = 1 is the 49th day, when the cumulative number of symptomatic infectious
individuals is 11.8%. However, the optimal time to start the closure strategy for Ta = 2 is the 32nd day, when the cumulative
number of symptomatic infectious individuals is 16.8%. Again, these days are the peak dates of Inew for Ta = 1 and Ta = 2,
respectively (see Fig. 5(b) for AP = 30%).

3.5. Sensitivity analysis (figures are shown in supplementary information)

As the epidemiological data for pandemic influenza are often uncertain, location specific, sparse, and limited, we
additionally examined the sensitivity of our simulation results to 5 key model parameters, namely, the fraction of
asymptomatic individuals (AP), the asymptomatic infectiousness (q), the basic reproduction number (R0), the length of
school closure, and the contact matrix.

Currently, there is no report for the value of q for the pandemic influenza A (H1N1), but some researchers estimate q
to be 0.003 [21,22], while other works assume q = 0.5 [5,24,34–36]. In this work, we performed a sensitivity analysis
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by varying q from 0.003 to 1. Jongcherdchootrakul et al. conducted surveys in school G and found that the asymptomatic
proportion (AP) was about 30%. The value of the fraction of asymptomatic individuals in this work is based on the research
by Kanlaya Jongcherdchootrakul et al. (First School Outbreak of Novel Influenza A (H1N1) Infections, Bangkok, June–August
2009), which is under the review process. However, other research works have assumed the AP to be 0.1, 0.36 and 0.5
[21,22], 0.33 [34], or 0.20 [35,36].We performed a sensitivity analysis of the AP by varying the AP from0.1 to 0.7. Uncertainty
also remains for the value of the basic reproduction number; therefore, we also performed a sensitivity analysis of R0 by
varying R0 from 1.2 to 5.0. Note that, unless otherwise stated, we used R0 = 3.45,AP = 0.3, and q = 1.

Figure S2 and Figure S3 show the results when there are no intervention strategies. Figure S2 shows the sensitivity
analysis for the peak date of Inew, the peak value of Inew, and the percentages of equilibrium-recovered individuals (Req)
at various values of asymptomatic proportion (AP) and asymptomatic infectiousness (q) when there are no interventions.
Clearly, the peak date of Inew is more shifted or delayed at the lower asymptomatic infectiousness and/or higher
asymptomatic proportion (AP). This also causes a lower percentage of equilibrium-recovered individuals at the end of an
epidemic. For large values of AP (e.g., AP > 0.7), the asymptomatic infectiousness parameter plays an important role in the
model. Different values of q can give significantly different values for the final size of an epidemic and the peak date of Inew
for a large AP. Obviously, when q = 1, both the peak date of Inew and Req do not depend on AP, and the peak value of Inew has
a linear relationshipwith AP. There are no epidemics when q < 0.003,AP > 0.65 and q < 0.25, or AP > 0.85 for R0 = 3.45.

In addition, Figure S3 shows the sensitivity analysis of the peak date of Inew, the peak value of Inew, and the percentages of
equilibrium-recovered individuals (Req) as a function of the basic reproduction number (R0)when there are no interventions.
R0 ranged from 1.2 to 5.0 with increments of 0.25, except for the first step, which had an increment of 0.3. The simulations
were runwith various values of asymptomatic infectiousness (q). From the figure, it can be seen that the peak of Inew appears
earlier for a higher R0 and/or q, and Req and the peak value of Inew are larger for a higher R0 and/or q. We can also see that
Req and the peak date of Inew with different values of q tend to converge to the same values at high R0, whereas the peak
value of Inew with different values of q tend to diverge at high R0. This implies that the epidemics curve for higher values of
q should be narrower. Note that there are no epidemics because the epidemics do not start when R0 ≤ 1.5, q ≤ 0.75 and
R0 ≤ 1.75, q ≤ 0.003 for AP = 0.3.

The sensitivity analysis for the percentages of equilibrium-recovered individuals (Req) after implementing the entire
school closure strategy (SC) for 9 days (without individual screening) as a function of the strategy start date for various values
of asymptomatic infectiousness (q) and basic reproduction number (R0) is shown in Figure S4(a) and (b). The optimum date
to start the entire school closure strategy is when Req is at its minimum.We can clearly see that the optimum date is shifted
to the right when the asymptomatic infectiousness and/or the basic reproduction number decreases. Moreover, Req also
decreases when the asymptomatic infectiousness and/or the basic reproduction number decreases. Note that the results for
implementing the entire school closure strategy alone do not depend on the asymptomatic proportion (AP) in our baseline
casewith q = 1. Figure S4(c) shows the optimumdate for implementing the entire school closure strategy alone as a function
of q. The solid line is the linear fit function y = −10.02x + 33.82, which gives an R-square of 0.995. Similarly, Figure S4(d)
shows the optimum date for implementing the entire school closure strategy alone as a function of R0. The solid line is the
fit with the inverse-square function y = 111.9x−2

+ 14.46, which gives an R-square of 0.9996.
Figure S5 and Figure S6 show the resultswhen only the individual screening strategy (IS) is implemented. Figure S5 shows

the sensitivity analysis for the peak date of Inew after implementing the individual screening strategy as a function of the time
allowed at the school (Ta). In the simulations, Ta ranged from 0.25 to 5.0 in increments of 0.25. The results were obtained by
varying values of the asymptomatic proportion (AP), asymptomatic infectiousness (q), and basic reproduction number (R0).
There were no well-defined peak dates of Inew in some parameter regimes at low values of Ta (indicated by the terminated
line segments), which also implies that the epidemics cannot survive if we implement the IS strategywith these parameters.
For example, if we know that an epidemic has R0 < 2.5, q = 1 and AP = 30%, we can stop it by implementing only
the individual screening strategy with Ta = 1. Figure S6 shows the sensitivity analysis of the corresponding equilibrium-
recovered individuals (Req) after implementing the individual screening strategy as a function of the time allowed at the
school (Ta). It can clearly be seen from Figure S6(a) that the IS strategy is less effective when the epidemic has a higher AP,
which is consistent with the results found by Lee et al. [19]. For example, for AP = 0.7, the IS strategy can reduce only about
10% (from 80% to 70%) of the Req with Ta = 1, whereas it can reduce almost 80% of Req with Ta = 1 if AP = 0.1. Moreover,
from Figure S6(b), we can see that the reduction percentage of Req after implementing the IS strategy is less sensitive to
the asymptomatic infectiousness (q). For Ta = 1, the IS strategy can roughly reduce the same amount of Req with different
values of q. Similarly, Figure S6(c) implies that the IS strategy is less sensitive to the value of R0, and, unless the epidemic
goes extinct, the IS strategy can reduce approximately the same amount of Req with different values of R0.

Figure S7 shows the sensitivity analysis for the percentages of equilibrium-recovered individuals (Req) after
implementing the entire school closure strategy for 9 days together with an individual screening strategy with Ta = 1
day and as a function of the entire school closure start date for various values of (a) asymptomatic proportion (AP), (b)
asymptomatic infectiousness (q), and (c) basic reproduction number (R0). Note that the IS strategy was implemented at the
start of the epidemic.We can see that, in general, the optimum date to start implementing the entire school closure strategy
is shifted to the right when the asymptomatic proportion, the asymptomatic infectiousness, and/or the basic reproduction
number decreases. Req also decreases when these parameters values decrease. However, there are some cases in which
the optimum point to start the entire school closure is just at the start of the epidemic, e.g., figure (a) with AP = 0.1 and
figure (b) with q = 0.5, and in some cases, there is no epidemic at all, e.g., figure (b) with q < 0.25 and figure (c) with
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R0 < 2.0. Implementing the IS strategy at the start of the epidemic should alter the contact pattern and lower the effective
reproduction number. This also causes a shift and delay in the optimum time to start the entire school closure strategy
(compared with Figure S4).

A sensitivity analysis of the percentages of equilibrium-recovered individuals (Req) when implementing the entire school
closure strategy for 5 days, 9 days, 2weeks, 8weeks, and 16weeks is shown in Figure S8. In figure (a), when the entire school
closure strategy was implemented alone, we can see that doubling the closure interval from 4 weeks to 8 weeks and from 8
weeks to 16 weeks only slightly decreases Req. So, deciding how long to close school depends on many parameters (that are
not considered here), e.g., mortality rate, disease severity, and economic costs. For the case of the influenza A (H1N1), the
mortality rate and the severity of the disease is low [24,25], so closing the entire school for only 9 days or 2 weeks may be
sufficient. Note that for the case of a closure interval of less than 2weeks, the optimumdate to start the entire school closure
is the same, with a peak date of Inew. However, as the closure interval increased, the optimum date shifted slightly before
the peak date of Inew. In figure (b), we implemented the IS strategy (at the start of the epidemic) together with the entire
school closure strategy. Implementing the IS strategy further reduces the final number of infected individuals. Moreover,
the long-duration SC (8 and 16 weeks) with the IS strategy can greatly enhance the reduction in Req. Similar to the case in
figure (a), when the closure interval less than 2 weeks, the optimum date to start the entire school closure is still the same
with a peak date of Inew.

Because there is currently no available data for the contact pattern of students in a school, in this section, we have also
performed a sensitivity analysis by changing the contact pattern used in the simulations. Figure S9 shows the sensitivity
analysis for the percentages of equilibrium-recovered individuals (Req) after implementing the entire school closure strategy
alone (a) and togetherwith the individual screening strategywith Ta = 1day (b) for a closure interval of 2weekswith various
contact matrix patterns. First, we tried the linear function, which assumed that the relative contact frequency (y) linearly
depends on the distance between rooms (x = 0, 1, 2, 3, 4), while the relative contact frequencies between students in the
same room and the two farthest rooms were fixed at 20 and 1, respectively, so that the linear function for the index-case
floor was y1 = −19x/4 + 20 (the linear contact frequency function between floors can be found in the same manner).
The second contact pattern was the exponential function, which has more compartment heterogeneity than our baseline
contact pattern, y2 = 20 exp[−(ln 40 + ln 2)x/4 + ln 2]. The relative contact frequencies between students in the same
room and between students in the two farthest rooms in this case were 40 and 0.5, respectively. The third pattern was the
Gaussian function, y3 = 20 exp[−(log 20)x2/16], and the last one was the exponential function with twice the frequency of
the baseline case; y4 = 40 exp(−0.749x). We can see from the figure that using different contact patterns only affects Req
but not the characteristic of the results. Therefore, our conclusion that the optimum point to close the school is at or around
the peak date of Inew is still valid and does not depend on the exact student contact pattern in the school. The y4 curves
are virtually the same as those of our baseline contact pattern (Figure S8). The more heterogeneous contact pattern (y2)
produces a lower Req compared to our baseline case. This is the obvious result because when there is more heterogeneity or
locality, the disease is more likely to stay in the same compartment, thus causing a lower transmissivity.

4. Concluding remarks

Here, we employed the SEAIRmodel as an efficient numerical tool for simulating school closure to investigate what is the
most effective criterion for conducting such a measure. Using data from initial outbreaks at School G in Bangkok, Thailand,
fromwhich detailed epidemiological data were collected, we estimated the basic reproduction number (R0) to be 3.58 (95%
confidence interval: 2.88–4.28).We tested various interventions, such as school closure and student screenings. It was found
that closing the school on the peak date of the number of daily incidences appeared to be effective in preventing further
outbreaks. Too early of a school closing resulted in subsequent episodes after reopening. Individual student screenings
appeared to reduce the number of total cases by up to 40%. In a situation in which a widespread outbreak of a mild disease
is unavoidable and in which the goal is to slowly reach sufficient herd immunity with a minimum number of cases, closing
a school at the predicted peak date of the number of daily incidences plus screening for respiratory symptoms appears to
be the most appropriate intervention method. Deciding how long to close the school depends on many parameters (that
are not considered here), e.g., mortality rate and economic costs. For the case of influenza A (H1N1), the mortality rate and
severity of the disease is low [24,25], and if we could isolate school and infectious individuals from communities, closing the
entire school for only 9 days or 2 weeks with the individual screening strategy might be sufficient. Finally, we would like to
mention that for a school closure intervention to work effectively, other interventions to control the spread of a pandemic
should be simultaneously implemented, especially canceling large social gatherings or school events that are conducive to
disease transmission.
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